

Journal of Organometallic Chemistry 494 (1995) 195-198

$1-Me_2NH-2-CH_2Cl-closo-1-CB_{11}H_{10}$. An unusual product from the insertion reaction of Me_2NBCl_2 with Li_2 [7-Me₃N-*nido*-7-CB₁₀H₁₀]

John H. Morris *, Gavin S. Peters, Mark D. Spicer

Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK

Received 31 October 1994

Abstract

The boron insertion reaction of Me_2NBCl_2 with $Li_2[7-Me_3N$ -*nido*-7- $CB_{10}H_{10}]$ gave new neutral compound, 1- $Me_2N(H)$ -2- CH_2Cl_2 closo-1- $CB_{11}H_{10}$. The reaction is thought to proceed via a metathetical insertion of Me_2NBCl_2 into the *nido*-carborane dianion, accompanied by demethylation of the 7-trimethylamine group and methylene insertion into the B–N bond of the inserted reagent, with concomitant protonation of its nitrogen. Nucleophilic-displacement of dimethylamine by chloride ion and protonation of the C–NMe_2 group then gives the observed product, which was characterised by multinuclear NMR spectroscopy and X-ray crystallography.

Keywords: Boron; Carborane; Carbaborane; X-ray diffraction; Boron neutron capture therapy

1. Introduction

Selective substitution of borane clusters is important in the search for suitable boron-containing, tumourseeking compounds for use in Boron Neutron Capture Therapy [1,2]. In a systematic study of substitution reactions, a series of two-substituted monocarbon carborane anions has been synthesised by the insertion of reagents "RBX₂", (R = F, Ph, p-Tol, O(CH₂)₄Cl, NMe₂; X = Cl, F) into Li₃[*nido*-7-HCB₁₀H₁₀] [3]. The analogous reaction between RBX₂ and Li₂[7-Me₃N $nido-7-CB_{10}H_{10}$] produced neutral compounds of the form $1-Me_3^2N-2-R-closo-1-CB_{11}H_{10}$, where R = H, F, Ph, $O(CH_2)_4Cl$ and $O(CH_2)_4Br$ [4]. The recently reported [5] insertion of ¹Pr₂NBCl₂ into Li₂[7-Me₃N*nido*-7-CB₁₀H₁₀] yielded the unexpected product 1- $Me_{2}N-2-iPr_{2}N(H)CH_{2}-closo-1-CB_{11}H_{10}$ (1), whose crystal structure clearly indicated the loss of a methyl group from the trimethylamine ligand, and methylene insertion into the B-N bond with subsequent protonation of the di-isopropylamine nitrogen.

2. Results and discussion

We report here another rearrangement product from the insertion of Me₂NBCl₂ into Li₂[7-Me₃N-nido-7- $CB_{10}H_{10}$] at ambient temperature. This product is 1- $Me_2NH-2-CH_2Cl-closo-1-CB_{11}H_{10}$ (2), rather than either the expected $1-Me_3N-2-Me_2N-closo-1-CB_{11}H_{10}$ (3) or a rearranged product analogous to (1). The structure of (2) (see Fig. 1) was assigned on the basis of (a) its ¹¹B NMR spectra, which were consistent with a twosubstituted CB₁₁ cluster of effective C_s symmetry, and (b) its ¹H NMR spectrum, which contained two singlets, the relative intensities of which were 1:3, and not the 2:3 ratio expected for (3). The ¹¹B NMR spectra consisted of one singlet overlapping a doublet, and three doublets, with relative intensities 2:2:4:3, reading upfield. This pattern was consistent with an eleven-boron, twelve-vertex cluster with C_s symmetry, but the envelope of chemical shifts was narrow, as in the ¹¹B NMR spectra of $1-Me_2N-2-iPr_2N(H)CH_2$ -closo-1-CB₁₁H₁₀ and 1-Me₃N-2-Ph-*closo*-1- $CB_{11}H_{10}$. The spectrum was assigned as follows: the singlet at $\delta - 6.78$ to B(2); the doublet at $\delta - 7.30$ to B(12); the doublet at $\delta - 12.36$ to B(7, 11); the doublet at δ - 14.63 to B(3, 6) and B(8, 10); and the final doublet at $\delta - 15.38$ to coincidence of the chemical shifts of the B(9) and B(4, 5)

^{*} Corresponding author.

Fig. 1. Molecular structure of $1-Me_2NH-2-CH_2Cl-closo-1-CB_{11}H_{10}$. Thermal ellipsoids are drawn at 40% probability.

resonances. The off-diagonal peaks of the ${}^{11}B-{}^{11}B$ COSY NMR spectrum confirmed this assignment. The structure was completely elucidated by an X-ray crystallographic study on a single crystal grown by slow evaporation of a 1,2-dichloroethane solution.

Structurally, the cage of (2) is similar to that in the previously reported structures of (1), $1-Me_2N-2-Me_2S$ closo-1-CB₁₁H₁₀ (4) [6] and $1-Me_3N$ -closo-1-CB₁₁H₁₁ [7]. The most significant difference is the slight lengthening of the cage carbon–N(1) bond from 1.466 Å and 1.443 Å in (1) and (4), respectively, to 1.516 Å in (2). The longer bond length can be attributed to the quaternary nitrogen N(1) in (2), whereas in (1) and (4) this nitrogen is three-coordinate and does not carry the positive charge. The zwitterionic nature of (1) and (4) is maintained on the substituent at the B(2) position.

A rationalisation of the reaction mechanism is given in Scheme 1. Earlier, (4) was produced by a high-temperature insertion reaction, involving severe conditions that have been reported to demethylate the trimethylamine ligand [6,8]. The mild reaction conditions under which both (1) and (2) were produced unexpectedly also resulted in demethylation of the trimethylamine ligand. After the steps involving insertion of the RBX₂ reagent, demethylation, and methylene insertion, the reactions must follow differing paths. The presence of chloride in the solution is thought to give rise to nucleophilic displacement of dimethylamine in the reaction intermediate with the result that in (2) the amine group has been replaced by chlorine. However in the case of (1),

the chloride does not displace the more sterically hindered, less volatile di-isopropylamine. After the loss of the amine from B(2), (2) maintains its zwitterionic nature by protonation at the only available site, i.e. the nitrogen bonded to the cage carbon atom (Scheme 1).

Undoubtedly, there is a set of very unusual insertion reactions occurring between amino-BCl₂ reagents and Li_2 [7-Me₃N-*nido*-7-CH₁₀H₁₀]. We are currently exploring these reactions and their mechanisms, and the results will be reported in a later paper [9].

3. Experimental details

3.1. General

All materials were reagent grade or better, and were used as received. $7-Me_2N$ -*nido*- $7-CB_{10}H_{12}$ was pre-

Table 1	
Crystallographic data for 1-Me ₂ NH-2-CH ₂ Cl-closo-1-CB ₁₁ H ₁	10

$B_{11}C_4H_{19}CIN$
235.56
triclinic
PĪ
6.928(1), 7.971(1), 12.598(2)
100.89(1), 96.61(2), 104.79(1)
650.69
2
244
1.202
2.20
h, -8 to $+8; k, -9$ to $+9; l,$
0 to 14
2487
$2280 (R_{int} = 0.014)$
1603
222
0.043
0.042
$1/[\sigma^2(F)+0.00057F^2]$
0.07
0.22 to -0.29
1.42

Table 2 Atomic coordinates for non-hydrogen atoms in $1-Me_2NH-2-CH_2Cl$ $closo-1-CB_{11}H_{10}$

Atom	x	у	z
C(1)	0.3507(4)	0.0660(3)	0.7313(2)
B(2)	0.2184(5)	0.0263(4)	0.8367(2)
B(3)	0.0914(5)	0.0117(4)	0.7018(2)
B(4)	0.2321(5)	-0.0694(4)	0.6043(2)
B(5)	0.4513(5)	-0.1012(4)	0.6786(3)
B(6)	0.4417(5)	-0.0459(4)	0.8216(2)
B(7)	0.0056(5)	-0.1570(4)	0.7728(3)
B (8)	0.0139(5)	-0.2153(4)	0.6305(3)
B(9)	0.2382(5)	-0.2844(4)	0.6160(3)
B(10)	0.3656(5)	-0.2688(4)	0.7498(3)
B (11)	0.2224(5)	-0.1916(4)	0.8460(3)
B(12)	0.0964(5)	-0.3407(4)	0.7197(3)
N(1)	0.4618(3)	0.2589(3)	0.7373(2)
C(2)	0.6601(5)	0.3274(5)	0.8143(3)
C(3)	0.4941(7)	0.3021(5)	0.6290(3)
C(4)	0.2258(6)	0.1754(4)	0.9412(2)
Cl(1)	0.1963(1)	0.3820(1)	0.9133(1)

pared by the published method [8]. Me_2NBCl_2 was obtained from the low-temperature condensation of Me_2NH and BCl_3 . NMR spectra were recorded on a Bruker AMX400 spectrometer (¹H, 400 MHz; ¹¹B, 128 MHz) in CD₃CN.

Table 1	3
---------	---

Bond lengths	(A)) for	1-Me ₂ NH-2-	-CH ₂ Cl-closo	$-1-CB_{11}H_{10}$
--------------	-----	-------	-------------------------	---------------------------	--------------------

C(1)-B(2)	1.731(4)	B(5)-B(6)	1.785(4)
C(1)-B(3)	1.715(4)	B(5) - B(9)	1.769(5)
C(1)-B(4)	1.729(4)	B(5) - B(10)	1.764(4)
C(1)-B(5)	1.717(4)	B(6)-B(10)	1.749(4)
C(1)-B(6)	1.729(4)	B(6) – B (11)	1.759(4)
C(1)–N(1)	1.516(3)	B(7)-B(8)	1.776(5)
B(2) - B(3)	1.791(4)	B(7) – B(11)	1.781(5)
B(2)-B(6)	1.800(4)	B(7)-B(12)	1.784(5)
B(2)-B(7)	1.771(4)	B(8)-B(9)	1.793(5)
B (2)– B (11)	1.769(4)	B(8) – B (12)	1.777(5)
B(2)–C(4)	1.584(4)	B (9)– B (10)	1.776(5)
B(3)–B(4)	1.781(4)	B(9)-B(12)	1.779(5)
B(3)-B(7)	1.770(4)	B(10)-B(11)	1.772(4)
B(3)-B(8)	1.774(5)	B(10)-B(12)	1.778(5)
B (4)– B (5)	1.790(5)	B(11)-B(12)	1.773(4)
B(4)–B(8)	1.763(5)	N(1)-C(2)	1.495(4)
B(4)B(9)	1.758(4)	N(1) - C(3)	1.496(4)
		C(4) - Cl(1)	1.803(3)
B(3)-H(3)	1.05(3)	C(2)-H(21)	0.97(3)
B(4) - H(4)	1.04(3)	C(2) - H(22)	0.92(3)
B(5) - H(5)	1.06(3)	C(2)-H(23)	1.01(3)
B(6)-H(6)	1.11(3)	C(3)-H(31)	0.92(4)
B(7)-H(7)	1.07(3)	C(3)-H(32)	0.91(3)
B(8)-H(8)	1.09(3)	C(3)-H(33)	0.98(3)
B(9)-H(9)	1.07(3)	C(4)-H(41)	0.92(3)
B (10)– H (10)	1.03(3)	C(4)-H(42)	0.83(3)
B(11)-H(11)	1.05(3)		
B(12)-H(12)	1.06(3)		
N(1)-H(13)	0.84(3)		

3.2. Preparation of 1-Me₂NH-2-ClCH₂-closo-1-CB₁₁ H_{10}

Treatment of 7-Me₃N-*nido*-7-CB₁₀H₁₂ (0.2 g, 1.1 mmol) with "Bu Li (two equivalents) in THF (10 cm³) at room temperature under an inert atmosphere gave a precipitate which redissolved immediately on addition of Me_2NBCl_2 (2 cm³). After 30 min stirring at ambient temperature the volatiles were removed under vacuum and the residue was extracted with CH₂Cl₂. Chromatography of the extract on a silica gel column with CH₂Cl₂ as eluent afforded 1-Me₂NH-2-CH₂Cl-closo-1-CB₁₁H₁₀ (65 mg, 0.28 mmol, 25.6%), melting point = 200°C. Anal. Found: C, 22.8; H, 8.5; N, 5.7%. $C_4H_{19}N_1Cl_1B_{11}$ Calc.: C, 20.4; H, 8.1; N, 6.0%. ¹¹B NMR chemical shifts (ppm): -6.78 (1B, singlet); -7.30 (1B, doublet, $J(^{11}B-^{1}H)$ 143 Hz); -12.36 (2B, doublet, $J({}^{11}B-{}^{1}H)$ 147 Hz); -14.63 (4B, doublet, $J({}^{11}B-{}^{1}H)$ 109 Hz); -15.38 (3B, doublet, $J({}^{11}B-{}^{1}H)$ 138 Hz). ¹H NMR chemical shifts (ppm): 3.35 (2H, singlet) (CH₂Cl); 2.97 (6H, singlet) (Me_2N). ¹¹B-¹¹B

Та	able	4			
~				(0) +	

Selected bond angles	(°) f	or 1-Me	2NH-2-CH	,Cl-closo	$-CB_{11}H_{10}$
----------------------	-------	---------	----------	-----------	------------------

	+	2	11 10
B6-B2-B3	107.3(0.2)	B12-B7-B11	59.7(0.2)
B7-B2-B3	59.6(0.2)	B4-B8-B3	60.4(0.2)
B7-B2-B6	107.4(0.2)3	B7-B8-B3	59.8(0.2)
B11-B2-B3	107.4(0.2)	B7-B8-B4	108.2(0.2)
B11-B2-B6	59.0(0.2)	B9-B8-B7	108.0(0.2)
B11-B2-B7	60.4(0.2)	B10-B9-B8	107.7(0.2)
C1-B2-B3	58.3(0.2)	B8-B12-B7	59.8(0.2)
C1-B2-B6	58.6(0.1)	B9-B12-B7	108.3(0.2)
C1B2B7	104.0(0.2)	B9-B12-B8	60.6(0.2)
C1-B2-B11	103.7(0.2)	B11-B12-B7	60.1(0.2)
C4-B2-B3	124.3(0.2)	B11-B12-B9	108.0(0.2)
C4-B2-B6	118.6(0.2)	B3∸C1-B2	62.6(0.2)
C4-B2-B7	125.6(0.3)	B4-C1-B2	114.0(0.2)
C4-B2-B11	122.2(0.2)	B4-C1-B3	62.3(0.2)
C4-B2-C1	123.6(0.2)	B5-C1-B2	114.6(0.2)
B4-B3-B2	108.7(0.2)	B5-C1-B3	114.4(0.2)
C1B3B2	59.1(0.2)	B5-C1-B4	62.6(0.2)
C1-B3-B4	59.3(0.2)	B6-C1-B2	62.7(0.2)
C1B3B7	104.8(0.2)	B6-C1-B3	114.2(0.2)
C1B3B8	104.9(0.2)	B6-C1-B4	113.7(0.2)
B5-B4-B3	107.8(0.2)	B6-C1-B5	62.4(0.2)
C1B4B3	58.5(0.2)	N1-C1-B2	116.2(0.2)
C1B4B5	58.4(0.2)	N1C1B3	115.6(0.2)
C1~B4-B8	104.8(0.2)	N1-C1-B6	119.6(0.2)
C1B4B9	104.6(0.2)	H13-N1-C1	109.6(2.3)
C1-B5-B4	59.0(0.2)	C2-N1-C1	114.4(0.2)
C1-B5-B9	104.6(0.2)	C2-N1-H13	104.8(2.3)
C1-B5-B10	104.3(0.2)	C3-N1-C1	114.8(0.2)
C1-B5-H5	117.9(1.4)	C3-N1-H13	103.7(2.3)
B3~B7-B2	60.7(0.2)	C1-N1-C2	108.5(0.3)
B8B7-B2	108.9(0.2)	H21-C2-N1	102.5(0.2)
B8B7-B3	60.0(0.2)	H31-C3-N1	108.9(0.2)
B11-B7-B2	59.8(0.2)	H41-C4-B2	111.8(2.1)
B11-B7-B3	107.9(0.2)	H42-C4-B2	115.0(2.4)
B12-B7-B3	107.7(0.2)	H42-C4-H41	100.6(3.0)
B12-B7-B8	59.9(0.2)	C11-C4-B2	115.5(0.2)

COSY correlations were observed between -6.78 and -12.36; -7.30 and -12.36, -14.63, -15.38, -12.36 and -14.63 and -15.38 ppm.

3.3. X-ray diffraction study

Crystal data are given in Table 1.

Direct methods in the program SHELXS-86 yielded a solution whose electron density map revealed the "CB₁₁" structure substituted at the one and two positions. These substituents were clearly not the expected NMe₃ and NMe₂ groupings, and included a heavy atom whose peak was somewhat more than twice the height of those of carbon and nitrogen. This was assumed to be a chlorine atom (on the basis that no other heavy atom had been present in the reaction mixture) and thus the substituents appeared to be CH₂Cl and NMe₂. Leastsquares refinement with anisotropic atoms converged with R = 0.089. At this point a difference electron density map revealed chemically reasonable positions for all the hydrogen atoms at the highest 19 peaks in the map $(0.68-0.36 \text{ e} \text{ Å}^{-3})$, including the unambiguous location of a hydrogen on the NMe₂ group, suggesting a quaternary nitrogen. The cage hydrogens were refined with a common isotropic temperature factor. Full-matrix least-squares refinement converged to R = 0.043 and $R_w = 0.042$ {222 parameters, 1603 reflections, anisotropic (B, C, N, Cl) and isotropic (H) atoms, $w = I/[\sigma^2(F) + 0.00056F^2]$, max. shift/error = 0.01}. The residual electron density was in the range 0.22 to $-0.29 \text{ e} \text{ }^{\text{A}^{-3}}$. Table 2 lists the final atomic coordinates for non-hydrogen atoms, and Tables 3 and 4 list selected bond lengths and angles, respectively. Atomic scattering factors for neutral atoms and anomalous dispersion corrections were taken from SHELX-76. All calculations were performed using the programs SHELXS-86 [10] SHELX-76 [11] and ORTEP-II [12] on a DEC VAX computer.

Tables of thermal parameters and hydrogen-atom coordinates, and complete lists of bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgements

We thank the SERC for a studentship (GSP), Dr. A.J. Welch for the X-ray crystallographic data, and the Nuffield Foundation for support (MDS).

References

- R.F. Barth, A.H. Soloway, R.G. Fairchild and R.M. Brugger, *Cancer*, 70 (1992) 2995.
- [2] J.H. Morris, Chem. Br., (1991) 331.
- [3] F.S. Mair, J.H. Morris, D.F. Gaines and D. Powell, J. Chem. Soc., Dalton Trans., (1993) 135.
- [4] J.H. Morris, G.S. Peters and M.D. Spicer, in preparation.
- [5] F.S. Mair, A. Martin, J.H. Morris, G.S. Peters and M.D. Spicer, J. Chem. Soc., Chem. Commun., (1993) 1058.
- [6] S.A. Khan, J.H. Morris, M. Harman and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1992) 119.
- [7] A.B. Yakushev, I.B. Sivaev, K.A. Solntsev, I. Yu. Kutznetsov, L.A. Butman and N.T. Kuznetsov, *Russ. J. Inorg. Chem.*, 33 (1988) 791.
- [8] J. Plešek, T. Jelínek, E. Drdákova, S. Heřmánek and B. Štíbr, Coll. Czech. Chem. Commun., 49 (1984) 1559.
- [9] F.S. Mair, J.H. Morris, G.S. Peters and M.D. Spicer, in preparation.
- [10] G. Sheldrick, *SHELXS-86*, *Program for the Solution of Crystal Structures*, University of Gottingen, Germany, 1986.
- [11] G. Sheldrick, SHELX-76, Program for Crystal Structure Determination, University of Cambridge, England, 1976.
- [12] C.K. Johnson, ORTEP-II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.